On Schrödinger Operators with Multipolar Inverse-square Potentials

نویسنده

  • VERONICA FELLI
چکیده

Positivity, essential self-adjointness, and spectral properties of a class of Schrödinger operators with multipolar inverse-square potentials are discussed. In particular a necessary and sufficient condition on the masses of singularities for the existence of at least a configuration of poles ensuring the positivity of the associated quadratic form is established.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Schrödinger Operators with Multisingular Inverse-square Anisotropic Potentials

We study positivity, localization of binding and essential self-adjointness properties of a class of Schrödinger operators with many anisotropic inverse square singularities, including the case of multiple dipole potentials.

متن کامل

Bound States of Discrete Schrödinger Operators with Super-critical Inverse Square Potentials

We consider discrete one-dimensional Schrödinger operators whose potentials decay asymptotically like an inverse square. In the super-critical case, where there are infinitely many discrete eigenvalues, we compute precise asymptotics of the number of eigenvalues below a given energy E as this energy tends to the bottom of the essential spectrum.

متن کامل

Inverse Scattering Theory for One-dimensional Schrödinger Operators with Steplike Periodic Potentials

We develop direct and inverse scattering theory for one-dimensional Schrödinger operators with steplike potentials which are asymptotically close to different finite-gap periodic potentials on different half-axes. We give a complete characterization of the scattering data, which allow unique solvability of the inverse scattering problem in the class of perturbations with finite second moment.

متن کامل

On the Existence of Ground State Solutions to Nonlinear Schrödinger Equations with Multisingular Inverse-square Anisotropic Potentials

v > 0 in R \ {a1, . . . , ak}, where N ≥ 3, k ∈ N, hi ∈ C(S), (a1, a2, . . . , ak) ∈ R , ai 6= aj for i 6= j, and 2 = 2N N−2 is the critical Sobolev exponent. The interest in such a class of equations arises in nonrelativistic molecular physics. Inverse square potentials with anisotropic coupling terms turn out to describe the interaction between electric charges and dipole moments of molecules...

متن کامل

Inverse Scattering Theory for One-dimensional Schrödinger Operators with Steplike Finite-gap Potentials

We develop direct and inverse scattering theory for one-dimensional Schrödinger operators with steplike potentials which are asymptotically close to different finite-gap potentials on different half-axes. We give a complete characterization of the scattering data, which allow unique solvability of the inverse scattering problem in the class of perturbations with finite second moment.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006